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Gaussian Beam Optical Systems with
High Gain or High Loss Media

Anthony A. Tovar and Lee W. Casperson, Fellow, IEEE

Abstract—Coherent electromagnetic wave amplifiers with non-
negligible gain per wavelength are included in the Gaussian beam
matrix formalism and a procedure is developed for propagating
Gaussian beams in optical systems that may include unsaturated
amplifiers and similar absorbers. Standard formulas for beam
spotsize and radius of curvature in a uniform medium are
generalized in a new way to include gain or loss. An asymmetric
focal shift and a potentially infinite spotsize are predicted. These
dramatic effects are interpreted physically.

I. INTRODUCTION

AUSSIAN beam theory was popularized by Kogelnik
who showed that, like paraxial light rays, Gaussian

beams could be traced through a wide variety of optical
systems by simple 2 x 2 matrix multiplication [1]. In these
systems the light beam remains Gaussian, and a unified
systems approach that includes polynomial-Gaussian beams
was developed. It is of practical importance to note that many
conventional lasers are examples of such optical systems, and
hence the output beam modes of these lasers and masers
can be simply described by Hermite-Gaussian [2}-{4] or
Laguerre-Gaussian [5]-[7] functions. For optical systems with
misalignments, the 2 x 2 matrix theory can be generalized to
an only slightly more complicated 3 x 3 matrix theory [8].

There are four explicit approximations made in Gaussian
beam theory: the “scalar approximation,” the “slow spatial
variation” approximation, the “paraxial approximation,” and
the “low gain per wavelength approximation.” The scalar
approximation and the slow spatial variation approximation
involve the spatial variation of the material properties of the
medium in which the light beam is propagating [9]-[12]. The
paraxial approximation is concerned with the variation of the
electromagnetic fields [4], [13]. It may under certain conditions
be avoidable [14], [15]. The low gain (or loss) per wavelength
approximation is used to ignore the diffractive effects of space-
independent gain (or loss) in studying propagation of the
beam profile in complex media treating such amplifiers (or
absorbers) as perfect dielectrics. These four approximations are
independent, and an important example of this independence
is a steady-state beam in a gain-focused laser. In this case, the
spotsize and radius of curvature of the beam do not change
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with distance, and thus no paraxial approximation needs to be
made. This situation exists regardless of the level of gain or
loss.

The universally-employed low-gain (low-loss) approxima-
tion cans be avoided in linear media. Thus, the purpose of
this study is to include simple amplifiers and absorbers in the
beam matrix formalism, and to examine how Gaussian beam
parameters vary in these media as compared to lossless dielec-
tric media. It is found that the effects of the active medium are
important when either the gain (or loss) per wavelength is large
or the light beam travels many Rayleigh lengths inside the
active material. In this case, the distance traveled per Rayleigh
length per gain per wavelength may approach unity. Of course,
the gain per wavelength may be large if either the amplifying
medium possesses a significant incremental gain or if the
wavelength is large as in the case of microwave amplification.
Dye lasers are commonly operated with a thin dye jet amplifier
where the incremental gain is large. Semiconductor lasers may
also possess a large incremental gain, and wavelength-sized
laser oscillators have been built [16], [17]. The demonstration
of single-atom masers also shows the possibility of very high
gain per wavelength [18]. It is not surprising that the transverse
modes of these high gain lasers may vary drastically from their
low gain counterparts, since other properties such as oscillation
frequency are known to vary significantly as well [19]. High
loss per wavelength can also occur in many absorbing media
such as dyes or metals, and the propagation of the Gaussian
beam parameters in such media is examined here for the first
time.

In Section II, the Gaussian beam matrix is found for flat
and spherical boundaries between two linear media which
may possess gain or loss, and the Gaussian beam matrix for
a thin lens of such material is written. Though several of
the matrices derived herein have similar forms to well-known
matrix representations for optical elements, they are complex-
valued to account for gain or loss and their applications
and implications may be different. As in other treatments,
it is assumed that the active medium does not saturate,
and hence higher order effects such as spatial and spectral
holeburning and cross-relaxation are ignored. However, the
formalism may include amplifier dispersion and may be used
to account for such effects as asymmetry in the frequency
spectrum [20], [21], mode pulling and mode splitting [22],
and chirped pulse amplification [23], [24]. In Section III,
formulas for spotsize and radius of curvature of Gaussian
beams in spatially homogeneous active media are found, and
an asymmetric focal shift is predicted. Similar focal shifts
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have been observed experimentally in a uniform absorber [25].
In these experiments, asymmetric focal shifts were achieved
using 1053 nm, I ps laser pulses in an argon vapor. Standard
formulas for beam spotsize and radius of curvature in a
uniform medium are generalized in a new way to include
gain or loss. It is shown that the spotsize error using the
conventional method can approach infinity in a finite distance.

II. GAUSSIAN BEAM MATRICES FOR HIGH GAIN MEDIA

In this section the beam matrix for a flat boundary between
active media is derived and is generalized to spherical (actually
parabolic) boundaries. Combining spherical boundaries results
in the matrix for a thin lens of active material, and a corre-
sponding “active” lensmaker’s formula is obtained. The results
are a group of complex-valued matrices which are organized
into Table I. Because of the use of beam matrices, previous
methods for investigating the mode stability [26], [27] and
synthesis [28], [29] of Gaussian beam optical systems that
include the matrices derived herein still apply.

The parameter most commonly traced through a Gaussian
beam optical system is the complex quantity J/k, = 1/q
where k, represents the complex propagation constant of the
medium. Hence, if the medium changes, then so will Q/k,.
For purposes of this study, media in which &, is purely real are
referred to as dielectric or passive, while those with nonzero
imaginary part are referred to as complex or active - this
includes amplifiers and absorbers. On a given plane, the real
and imaginary parts of the beam parameter @ are related to
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the physical parameters of the nearly plane wave

27,
Q, = Y} (la)
2
Q. = - (Ib)
w

The symbol w, known as “spotsize,” is the radius of the Gauss-
ian beam where the electric field amplitude has decreased to
1/e of its maximum. The radius of curvature R, of the phase
fronts at a given point on the propagation axis is defined to
be positive when the center of curvature of the phase fronts
is behind that point. The symbol n is the index of refraction
of the medium in which the nearly plane wave is propagating.
The symbol ) is the wavelength of a plane wave propagating
in freespace having the same frequency as the Gaussian beam.
The quantity Q/k, can now be related to the Gaussian beam’s
spotsize and radius of curvature by the relation

I _Q B/ B2 /w?
g ke Pk,
[1/R=2a/(Bow*)] —iloen /R+2/ (Bow?)]

B 1+a3 @
where the real and imaginary parts of the axial propagation
constant k, are (§, and «, respectively. For nearly plane
waves, the axial wavenumber is 3, = 27n/)\, and «, is the
axial exponential electric field gain constant. The normalized
incremental gain a) = a,/B, is dimensionless. Media with
positive «;, are amplifiers while those with negative «, are
absorbers. Typically, |ax| < 1 and (2) reduces to the usual
Gaussian beam relation [1]

1 1 A
- = @ =—=—1 . 3)
g B, R nrw?

However, there may be cases where o) <« 1 is a poor

approximation, and it is our purpose to investigate such
scenarios.

The first matrix to be considered is that for a flat boundary
between active media. Across a boundary, Kogelnik’s “ABCD
Law” [1] (also called the “Kogelnik Transformation™) is

Q2 _ Q1 kor _ C + DQ1/kor
koz ko1 ko2 A+ BQi/kor’

This result is a consequence of the constancy of the complex
beam parameter, (J, across a flat boundary. It follows from (4)
that a possible beam matrix for a flat active boundary is

1 0
Tflat boundary — (0 k01/k02 ) - (5)

This reduces to the well-known boundary matrix for a dielec-
tric medium in the special case that k,; and k.o are real.
With this matrix one is able to trace Gaussian beams of light
described by (2) through complex paraxial optical systems.
One need only apply the matrix (5) with (4) as one would
the matrix for a passive optical boundary. However, inside an
active medium, the form of (2) implies new expressions for
spotsize and radius of curvature as «) is nonzero. Of particular
interest is that amplifiers can be included in laser resonators,
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where except for the exponential gain factor, they are usually
implicitly neglected.
The matrix for a curved dielectric boundary is

1 0

6
kol} 1 ko ©
k02 R koz

Tsphertcal boundary — [
1—

where this R is the radius of curvature of the boundary, which
is defined to be positive when it is concave to an incident light
beam. Again, this reduces to the familiar matrix for a spherical
dielectric boundary when k,; and k,2 are purely real.

As a practical example, the beam matrix for a thin lens
which inevitably has loss (or gain) is found. It may be obtained
by cascading two spherical boundaries. The resulting matrix
is identical in form to the matrix for a conventional thin lens
if the focal length is identified by the relationship

-1

factwe

1 1

= (koersr —1) [R_l - R_z]' )
This is the complex generalization of the traditional lens-
maker’s formula. The symbol [, represents an effective
“complex focal length” of the lens and k, .5y is the complex
propagation constant of the lens material divided by the
complex propagation constant of the medium containing the
lens. An even more general formula could be derived in cases
where the lens acts as a boundary between two different types
of media as, for example, some microscope lenses do. If the
background medium is vacuum, then the beam matrix for an
active thin lens can be written

1 0
Tth'm lens — [_l -4 A :| 1 (8)
f w[2(ne—1)f /o)

where f would be the focal length of the lens if it were neither
amplifying nor absorbing. Comparing (8) and the matrix for
a Gaussian aperture [30] it follows that the effective aperture
of the lens is

we? = 2(no — 1) f/to. )

1f the active thin lens is positive and amplifying, then from (9)
w2 > 0 and it acts as if it were a passive thin lens combined
with a stabilizing Gaussian aperture. This is reasonable since
the lens is thicker on axis and therefore has more gain on
axis. Likewise, a thin complex lenslike medium with more
gain in the center is known to act as a Gaussian aperture [30].
Conversely, if the active thin lens were positive but absorbing,
then it would act as to increase the spotsize of the input beam.
Thus, an absorber in the shape of a negative lens would act
as a stabilizing aperture.
Media with only axial variations of index of refraction and
gain (or loss) are of interest, and the beam matrix is
1k, (0) [ k51 (2 )dz

o

I

(10)
0 ko(0)/k,(d)

As with the previous matrices, though the form of (10) is
similar to the previously derived real ray matrix [31], this
beam matrix is complex.
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With the matrices derived in this section, the spotsize and
radius of curvature can be traced through Gaussian beam
optical systems and resonators that include active media. The
beam matrix (5) can be combined with the beam matrix for
a homogeneous medium to obtain the transfer characteristics
of such a material

T {1 0 12\ (1 0
active medium — 0 ko/ﬂuw 01 0 ﬂair/ko
— 1 ﬂairz/ko
0 1 )

The quantity B4, = 27/ is the wavenumber of freespace.
It appears that just as the active thin lens generalizes to a
thin lens of “complex focal length,” an active homogeneous
medium may be thought of as a upiform medium of “complex
length.” There may be occasions when the matrix (11) being
complex is undesirable. This may be the case if, for example,
the output beam modes of an optical system are required to be
Hermite—Gaussian modes of real argument. The active medium
can be cascaded with an optical subsystem so that the total
system matrix contains only real elements. One possible choice
of such an optical subsystem is represented by (40) in [28].
The subsystem contains lenses and Gaussian apertures whose
parameters must be chosen in such a way as to obtain the
desired effect.

an

III. GAUSSIAN BEAMS IN UNIFORM
AMPLIFIERS WITH HIGH GAIN

The purpose of this section is to use the formalism devel-
oped in the Section II to investigate Gaussian beam prop-
agation in high gain spatially homogeneous amplifiers and
high loss spatially homogeneous absorbers. In particular, the
emphasis here is placed on the spotsize and radius of cur-
vature of a Gaussian beam propagating through these media.
Comparisons are made between high gain results and their
corresponding low gain limits, and cases where the effect of
the gain (or loss) is significant are considered.

Since information about the beam spotsize and radius of
curvature is contained in the beam parameter, it is appropriate
to begin with the Kogelnik Transformation

Qs  C+ D]k

ke A+ BQuka’ 12
There are several ways to proceed. If the input beam and the
output beam are both within the amplifier then k.1 and kg2
are complex. In this case the beam matrix for an amplifier
or absorber is identical to the beam matrix for freespace.
Alternately, both the input and the output could be just outside
the amplifier. For simplicity, this latter method is used here and
the medium outside the amplifier is chosen to be freespace.
Thus the transfer characteristics of the medium are of interest
and the ABCD matrix is given by (11). Substituting (11) into
(12) results in

Qlko

= X 13
o + 201 (1

Q2
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For simplicity and convention, the coordinate origin (z = 0) is
chosen at the input , and the input beam is constrained to have
flat phase fronts (infinite radius of curvature). In freespace this
is also where the spotsize is minimum, and this input plane
is called the “waist.” Since the input beam has infinite radius
of curvature, it follows from (1a) that the real part of the
input complex beam parameter is zero ((J1, = 0). As before,
ko, = B, + ta,, and (o can be written in terms of real and
imaginary parts

—z[z, + i1+ ax(ar — z/2,)]

QZ - Qli 1 N (z/zo _ a}\)z

(14)

The quantity 2, = B,w?/2 is the usual Rayleigh length
which incorporates the medium’s refractive index, and oy is,
as before, the ratio of the exponential gain factor a, to the
wavenumber (,. The complex beam parameter is related to the
Gaussian beam’s spotsize and radius of curvature through (3).
Substituting (3) into (14) and separating real and imaginary
parts yields

wi_ 1+(z/z,— an)’
1-— oo\(z/zo —Oé)\)

w? (15)

Ry = 2[(1 - axzo/2)" + (20/2)°]. (16)
These two equations are the fundamental results of the section.
Their ramifications are -examined below.

Equations (15) and (16) are valid for amplifiers (o > 0),
absorbers () < 0), and dielectrics ( o) = 0). For beam
propagation through pure dielectrics, (15) and (16) reduce to
the usual formulas for spotsize and radius of curvature

;“—% =1+ (z/z,)* (17)
Ry = z[l + (zo/z)Z}. (18)

Beam propagation through amplifiers is now considered.
In stark contrast to the conventional spotsize formula (17), a
notable feature of (15) is that in a finite distance, the spotsize
approaches infinity. This occurs if the length of the amplifier is

1+ ai
Zoo = Zo-
ax

(19)

If the amplifier is longer than this “catastrophic length,” then
from (15), the square of the spotsize goes negative, and the
light beam, rather than being Gaussian, has a minimum on axis.
This suggests a possible mechanism for ring mode formation.
Because of this catastrophe effect, it is difficult to define a
diffraction angle. Another important result of (15) is additional
focusing in amplifiers. It can be shown by minimizing (15)
with respect to z that the light beam achieves a minimum
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Fig. 1. Beam propagation in uniform amplifiers, absorbers, and dielectrics.

spotsize when

1
1 +062 3 1 -
Zfocus = —““‘—( A) [(1 + ai) 2 =1z 20
Q) i
and has the corresponding spotsize
25wy 2\3 3
Wfocus = a [(1 + Oé)\) — 1] . (21)

In the limit of small ay, (20) and (21) reduce 10 zfocus = 0
and wocus = w1 . When z = ayz,, the beam has returned to
its initial size (w = wy) but the radius of curvature is z;/cy.
The radius of curvature at the catastrophic length, z., , is this
same z,/cy. The radius of curvature remains positive as it
propagates through the amplifier, even though the amplitude
focuses. The minimym radius of curvature occurs after the
focus at z,(1+ ). In an absorber, the spotsize increases
monotonically. These beam spotsize results are summarized in
Fig. 1. The spotsize of a beam in an amplifier at —z is the same
as that for an absorber at +z [i.e., w(z — —z,ax — —ay) =
w(z, ax)l.

To understand the catastrophic behavior of the Gaussian
beam, the difference between a “nearly plane wave” and a
“nearly spherical wave” is examined. The exponential portion
of a spherical wave can be written

Espherical wave — €XP [_ikoR] (22)
= exp [—z‘ko (22 + 92 + 2%) “] 23)
2 2
~ exp [—ikoz] exp {—ikox 2-;2y ] (24)
) :L.Z_i_,yz ) xz_l_,y2
:exp[ozoz]exp[—zﬂoz]exp [ao 5R :l €xp ["Zﬁo 2R :! .
(25)

Similarly, a Gaussian beam can be written

Enearlyplane wave —EXP [aoz}exp[_iﬂoz]

z +y° 24y
exp [— — ]exp [—zﬂo2—Ry (26)
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1 o
= Lispherical wave €XP [— (12 + y2) (E + '2_]0%)] . (27)
Therefore, a Gaussian beam can be written in the usual way
as a “nearly plane wave” (26) or as a “nearly spherical wave”
(27). One can convert from one formulation to the other if the
following identification is made

1 1 Qp

= 4 2o (28)
gphere w127lane 2R

w

Thus with high gain or loss per wavelength, the amplitude
distribution depends sensitively on the shape of the surface
over which it is measured, and the spotsize measured on
a plane will be different from the spotsize measured on a
spherical wave front. In particular, if a,/(2R) > 0 then the
spotsize on the spherical wavefront will be smaller than that
measured on the corresponding plane. Equation (15) can be
rewritten for spotsize on a spherical wavefront by combining
it with (16) and (28) to yield

2
w
2 _ Yl,sphere 2
W3 sphere = ’ 1+ (Z/ZO - O‘A) .

(29)
1+a2

This is similar to the formula for the spotsize in freespace
(17) except that the input beam is slightly scaled and the
waist is displaced. Since the denominator is positive definite,
the catastrophic behavior is absent on the Gaussian beam’s
spherical wavefront.

The catastrophic behavior is now examined. On its spherical
wavefronts, the Gaussian beam’s spotsize is governed by (29).
Since the shape of the amplifier output plane is flat and the
shape of the last phase front is spherical, there is a mismatch.
At the flat output plane of the amplifier, the center of the
positive spherical phase front has reached the output, while
the sides of the beam undergo additional amplification. This
is equivalent to an inverted Gaussian aperture at the output.
From (28) it follows that the width of this effective aperture
is w2 = —2R/a,. In agreement with our interpretation, the
closer the radius of curvature to infinity (the output shape of
the amplifier) and the smaller the gain coefficient, the larger the
effective aperture and the smaller the effect. It is this effective
inverted aperture at the output that causes the catastrophe
effect.

Some insight into the initial focusing and defocusing effects
may be obtained by further examination of the phase fronts of
the beam. For the special case here, the initial phase front is
flat. Diffraction causes the next phase front a wavelength into
the material to be slightly curved positively. Thus the center
of the phase front has gone farther than the sides of the phase
front. In the case of an absorber, there is more loss at the center
than at the sides and the beam sees an effective loss profile
causing defocusing. This is also the case for succeeding phase
fronts, and the beam defocuses monotonically. In an amplifier,
the farther going center of the phase front sees more gain on-
axis and therefore sees an effective gain profile causing the
beam to focus.

It can be seen that the catastrophe effect does not exist
in absorbers. However, there exists an “inverse catastrophe
effect.” Thus an inverted Gaussian beam may be converted to
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a Gaussian beam and it may be possible for the absorber to
approximately convert a ring mode to a Gaussian beam. This
suggests that there may be complex optical systems (including
laser oscillators) where the output spotsize is finite but at
one or more intermediate planes within the optical system the
spotsize is infinite. Under these conditions care must be taken
to insure that all system apertures have been appropriately
accounted for.

It is interesting to consider “spotsize error” in a high gain
laser amplifier due to the use of the low gain approximation.
In Fig. 1, this amounts to dividing the “amplifier” curve by
the “dielectric” curve. It can be seen that spotsize error due to
the low gain approximation is significant if the length of the
amplifier is within an order of magnitude of its catastrophic
length, and approaches infinity as the length of the amplifier
approaches its catastrophic length.

IV. CONCLUSION

A general formalism has been developed to propagate
Gaussian beams of light in optical systems and resonators
representable by complex ABCD Gaussian beam matrices
including media with large values of loss or gain. It is
found that the usual low gain per wavelength approximation
is unnecessary, and Gaussian beam propagation in spatially
homogeneous amplifiers and absorbers has been examined.

It is reasonable that the low gain approximation is suspect
in media with high loss (or gain) per wavelength. However, a
basic result here is that the loss per wavelength can be rela-
tively small, but if the Gaussian beam travels many Rayleigh
lengths in the absorber (or amplifier), it is not appropriate
to use the low gain approximation as accumulated error can
be substantial. These effects may be important in practice
since it is not uncommon for absorbers to be thousands of
Rayleigh lengths long. This is particulatly true in high intensity
applications where very strong focusing often occurs.
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